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In Experiment I, a group of eight pigeons performed on concurrent random-interval
schedules constructed by holding probability equal and varying cycle time to produce
ratios of reinforcer densities of 1:1, 3:1, and 5:1 for key pecking. Schedules for a second
group of seven were constructed with equal cycle times and unequal probabilities. Both
groups deviated from simple matching, but the two forms of the schedules appeared to
produce no consistent patterns of deviation. The data were found to be consistent with
those obtained in concurrent variable-interval situations. The parameters of the matching
equation in the form of Y = k Xa were estimated; the value of k was unity and a was 0.84.
In Experiment II, six pigeons were exposed to two conc RI RI schedules in which one
component increasingly approximated an Fl schedule. The valuie of k was not 1.0. Concur-
rent RI RI schedules were shown to represent a continuum from conc FI VI to conc VI VI
schedules. The use of the exponential equation in testing "matching laws" suggests that
a < 1 will continue to be observed, and this will set limits on the form of new laws and
the assumed or rational values of the component variables in these laws.
Key words: concurrent schedules, matching law, random-interval schedules, key pecks,

pigeons

Herrnstein's (1961, 1970, 1974) matching
law is an elegant quantitative formulation of
a relation between response distributions and
reinforcer distributions in concurrent variable-
interval variable-interval (conc VI VI) sched-
ules of reinforcement. It is written as:

B1/(B1 + B2) = rl/(r1 + r2). (1)

Here, B1 and B2 are counts of responses on al-
ternatives 1 and 2; ri and r2 are counts of rein-
forcers for responses on alternatives 1 and 2.
An algebraic equivalent of Equation 1 is:

B1/B2= rl/r2. (2)

Several experimenters (Baum, 1974; de Villiers,
1977; Staddon, 1977) have found that Equa-
tion 2 is often not satisfactory. They have con-
sidered a more general formulation:

Bl/B2 = k(rl/r2)a. (3)
As the latter writers have shown, a large

amount of data from experiments employing
conc VI VI schedules are better accounted for

'The author wishes to thank Paul Donn for his help
in conducting the experiment. Reprints may be ob-
tained from the author, Department of Psychology,
Central Michigan University, Mt. Pleasant, Michigan
48859.

by Equation 3 than by Equation 2. This result
is not surprising. An equation with two free
parameters will often fit data better than an
equation with no free parameters. Equation 2
is a powerful simplification of a relation be-
tween two variables of obvious importance in
operant conditioning: it is an empirical theory.
As a theory, it implies that the values of k
and a in Equation 3 are unity. The values of
k and a obtained by curve fitting for Equation
3 can be used to test the theory represented
by Equation 2. To date, the values of k and a
for individual organisms sometimes deviate
from unity (Baum, 1974). Thus, the theory is
sometimes brought into question.

If curve fitting by the method of least
squares is used to estimate the parameters
of Equation 3 from data for individual orga-
nisms, and these parameters are used to test
the theory represented by Equation 2, then it
is unlikely that k and a will be precisely unity
in any particular case. At some arbitrary level
of precision, Equation 2 is probably false in
individual cases. How large can deviations
from 1.0 be before falsification is accepted?
How many "falsifying" samples among "con-
firming" samples must exist before a general
evaluation can be seriously entertained? Given
the elegance of Equation 2, its nomothetic po-
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tential should be examined thoroughly before
replacing it with the less falsifiable Equation
3. If Equation 3 produces good fit to data from
individual animals, then the resultant param-
eter values can be subjected to statistical meth-
ods for parameter estimation in the presence
of random fluctuation, and the results can be
used as a strong aid to intuition in the final
evaluation of the nomothetic character of
Equation 2.
The first experiment reported here was de-

signed to test Equation 2 through parameter
estimation for Equation 3. The schedules were
concurrent random-interval random-interval
(conc RI RI), rather than conc VI VI sched-
ules. As will be shown later, available data for
the latter schedules seriously question the va-
lidity of Equation 2. No data on conc RI RI
schedules exist for this purpose.

Before proceeding with the experiment, the
formal properties of VI and RI schedules may
be profitably compared. With VI schedules,
one generates a set of interreinforcer intervals
with the constraint that the mean of the set
has some desired value. The constituent inter-
vals are then mixed and programmed, often
via a punched tape device, for control of rein-
forcer delivery. The RI schedule has greater
constraint in the intervals that occur. To ob-
tain an RI schedule, one fixes an interval, T.
A probability generator provides reinforcer
availability at the end of T with probability
P. If P is 1.0, then a fixed-interval (FI) sched-
ule results no matter what T is. If P is less
than 1.0, then the schedule is an RI no matter
what T is. If P is less than 1.0 and the gener-
ator does not make a reinforcer available at
the end of T, then another period of length T
passes before a reinforcer is available, again
with probability P. Since T and P can be
chosen independently over a large range of val-
ues, a variety of mean interreinforcer times can
be arranged. The mean interval is given by
T/P and the variance of these intervals is
(T/P)2(1-F) (Millenson, 1963). For VI sched-
ules, the distribution of intervals can be of any
kind, often rectangular, while for RI sched-
ules the distribution approximates the geo-
metric distribution. If behavior were insensi-
tive to the shape of the distributions, then
conc RI RI and conc VI VI results should be
the same. However, if the interreinforcer dis-
tribution were an effective differentia, then
Equation 2 might be supported. In either case,

the generality of disconfirmation would be
placed in perspective.

EXPERIMENT I

METHOD

Subjects
Fifteen experimentally naive Silver King pi-

geons were maintained at 80% to 85% of their
free-feeding weights throughout the experi-
ment.

Apparatus
Four Lehigh Valley Electronics pigeon

chambers were individually housed in Indus-
trial Acoustics Company isolation chambers.
The operant conditioning boxes were supplied
with a horizontal row of three transparent re-
sponse keys, which could be illuminated from
the rear with white light. The keys were 2.54
cm in diameter and were separated, center-
to-center, by 8.25 cm. A grain dispenser was
located below the second key and was illumi-
nated when activated. Control of lights, pro-
gramming of schedules, and data retrieval were
effected by a Lehigh Valley Electronics Inter-
act System employing a PDP 8/I 8k computer.
No houselight was used. The apparatus is de-
scribed in detail elsewhere (Rodewald, 1972).

Procedure
The pecking response to the center white

key was shaped by the method of successive
approximations. Two sessions followed with a
random-ratio eight schedule in effect on the
center key. The schedule was then changed
to an RI 32-sec for two 30-min sessions. Next,
the left and right keys, but not the center one,
were alternately illuminated with white light
during a 30-min session. The RI 32-sec sched-
ule was in force for pecks on the lighted key
with extinction (EXT) programmed on the re-
maining, dark keys. Exposure to the alter-
nating RI 32-sec EXT was followed by two
30-min sessions on conc RI 32-sec RI 32-sec,
with left and right keys simultaneously illumi-
nated. For this schedule and for all other con-
current schedules, a 3-sec changeover delay
(COD) was employed, and pecks on the dark
center key had no programmed effect.
The remainder of the experiment consisted

of exposure to various pairs of conc RI RI
schedules. All animals began with 10 sessions
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on conc RI 64-sec RI 64-sec (TL,R = 20 sec,
PL,R = 20/64). Two groups were then differ-
entiated in regard to the parameters, T and
P, of the pairs of schedules. For Group T, the
members of a concurrent pair differed in T
but not in P; for Group P, the components
differed in P but not in T. After the first 10
sessions, Group T advanced to 27 sessions on
conc RI 128-sec RI 42.67-sec (TL = 27 sec,
TR = 9 sec, PL,R = 27/128) and then to 13
sessions on conc RI 192-sec RI 38.40-sec (TL
= 45 sec, TR = 9 sec, PL,R = 30/128). For
Group P, 27 sessions on conc RI 128-sec RI
42.67-sec (TLR = 20 sec, PL = 20/128, PR =
60/128) were followed by 13 sessions on conc
RI 192-sec RI 38.40-sec (TL,R = 18 sec, PL =
12/128, PR = 60/128). Subscripts indicate left-
and right-key schedule parameters. To reduce
the possible systematic influence on the data
of peculiarities of the individual chambers, the
birds were placed in a different chamber each
day according to a simple rotation scheme.
Sessions lasted 1 lhr, and the reinforcer was
a 3-sec access to mixed grain.

RESULTS AND DISCUSSION
Responses and obtained reinforcers for both

alternatives were averaged over the last five
sessions for each bird and each concurrent
pair. The means are given in Table 1. The
values in parentheses are the standard errors
of the neighboring means. Inspection of these
data indicates that the standard errors are
quite small, given the value of the means.
It can be assumed that the mean values are
representative of the five sessions on which
they are based.
To estimate values of k and a for each ani-

mal, the logarithms of the response and ob-
tained reinforcer ratios derived from Table 1
were used. Parameters of the following equa-
tion were estimated by the method of least
squares:

log(B1/B2) = alog(r1/r2) + logk. (4)
This is simply Equation 3 in logarithmic form.
The results are given in Table 2, column (a).
In column (b), logk was fixed at zero, and a
was treated as a free, fitted, parameter. Col-
umn (c) gives the results obtained when a was
fixed at 1.0 and logk was free to vary. The val-
ues in parentheses are measures of goodness of
fit. These are the variance of log(B1/B2) about
the fitted line divided by the variance of log

Table 1

Means and standard errors for last five sessions on each
schedule for each animal.

Responses/Minute Reinforcers/Hour
Animal Left Right Left Right
GROUP T

7018 50.5 (1.5)
30.6 (1.9)
26.3 (2.5)

8236 35.4 (3.5)
21.4 (1.7)
16.8 (1.2)

7036 31.2 (2.8)
15.8 (2.8)
12.9 (1.5)

8271 30.5 (1-3)
21.3 (0.7)
15.3 (1.0)

8122 42.8 (1.9)
31.0 (3.5)
18.0 (2.0)

8062 52.8 (3.2)
10.3 (0.6)
18.4 (1.4)

7804 42.9 (2.1)
13.1 (0.9)
11.3 (1.7)

7024 23.9 (1.9)
10.3 (0.8)
8.7 (1.4)

GROUP P
7063 52.3 (4.1)

30.8 (2.2)
30.6 (1.9)

7760 43.5 (5.2)
27.3 (1.8)
16.2 (2.3)

8306 27.6 (2.6)
11.9 (2.0)
12.4 (1.2)

7582 24.1 (1.5)
15.0 (2.0)
12.7 (1.3)

7722 49.4 (8.4)
23.4 (1.7)
12.1 (1.9)

7635 27.9 (2.9)
10.9 (1.5)
14.7 (1.4)

7595 28.2 (1.6)
15.4 (0.8)
15.6 (2.2)

39.5 (3.0)
85.0 (2.6)
88.2 (6.8)
26.6 (2.3)
44.4 (2.9)
45.5 (2.4)
32.6 (4.4)
44.1 (4.6)
45.4 (3.4)
36.2 (1.9)
49.5 (2.4)
57.5 (3.7)
52.2 (1.7)
71.1 (4.1)
74.8 (4.1)
45.4 (2.2)
71.7 (6.4)
101.6 (7.6)
41.8 (6.0)
82.5 (2.3)
68.3 (2.8)
28.3 (1.8)
55.1 (5.0)
86.6 (6.7)

42.7 (3.7)
55.2 (4.0)
53.4 (2.3)
34.6 (3.8)

101.6 (4.8)
101.6 (6.9)
23.9 (2.0)
37.8 (6.0)
53.2 (2.2)
27.2 (3.6)
41.2 (4.3)
56.7 (4.4)
52.5 (1-9)
88.6 (6.5)
87.3 (6.5)
30.6 (3.5)
39.6 (2.8)
59.2 (3.4)
32.4 (2.2)
50.4 (2.2)
48.0 (1.7)

52.4 (3.7)
27.6 (2.9)
15.8 (1.2)
47.6 (1.3)
24.8 (0.5)
15.6 (0.6)
41.6 (3.7)
19.4 (3.7)
15.2 (0.9)
48.0 (3.5)
19.8 (1.2)
13.8 (1.8)
47.8 (2.6)
23.8 (1.4)
15.2 (1.0)
46.2 (1.2)
16.0 (0.9)
15.2 (1.6)
45.0 (1.4)
22.8 (2.4)
13.8 (1.7)
40.6 (3.0)
20.4 (0.5)
12.8 (1.1)

48.6 (2.6)
21.6 (1.6)
19.0 (2.1)
37.8 (6.2)
21.0 (2.3)
14.2 (1.5)
45.4 (3.1)
20.0 (3.6)
15.6 (2.4)
43.8 (2.5)
21.4 (1.9)
12.8 (1.0)
44.8 (3.9)
24.4 (1.6)
11.2 (1.5)
41.0 (3.6)
18.0 (2.9)
14.2 (1.6)
44.8 (1.0)
19.6 (1.4)
14.0 (1.5)

49.0 (3.1)
74.8 (3.9)
82.2 (3.4)
41.6 (2.4)
74.6 (2.9)
79.0 (2.6)
43.0 (4.7)
70.6 (9.0)
72.0 (3.9)
50.8 (0.9)
79.6 (3.0)
89.8 (2.9)
49.2 (3.0)
72.8 (2.6)
87.2 (4.6)
43.6 (32)
70.8 (2.1)
80.2 (3.9)
44.6 (3.0)
79.2 (2.3)
75.2 (2.6)
46.8 (2.3)
66.6 (3.0)
83.4 (1.5)

43.4 (3.4)
77.0 (1.7)
80.4 (2.2)
41.8 (2.3)
72.8 (3.7)
90.8 (3.0)
43.6 (4.0)
66.4 (7.4)
84.8 (2.6)
44.4 (3.0)
71.6 (0.7)
82.8 (2.2)
45.8 (2.8)
79.0 (1.3)
91.8 (3.3)
48.2 (2.1)
72.8 (2.5)
74.6 (3.7)
45.0 (2.4)
75.8 (3.2)
88.6 (2.7)

(B1/B2). The smaller the value the better the
fit. Column (d) displays the fit when a = 1.0
and logk = 0.0: this is the logarithmic form
of Equation 2. Note that the table gives k, not
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Table 2

Values of k and a and Goodness-of-fit ()

(a) (b) (C)
k= a k=la= a=1k= k=1

GROUP T
7018 0.90 0.89 (0.07) 0.82 (0.08) 0.82 (0.08) (0.18)
8236 0.85 0.74 (0.01) 0.64 (0.05) 0.68 (0.12) (0.61)
7036 1.01 0.79(0.00) 0.80 (0.01) 0.83 (0.07) (0.19)
8271 1.12 0.61 (0.03) 0.67 (0.05) 0.72 (0.44) (0.92)
8122 1.16 0.70 (0.02) 0.80 (0.05) 0.86 (0.20) (0.29)
8062 0.95 1.18 (0.04) 1.15 (0.04) 1.15 (0.06) (0.08)
7804 1.07 1.16(0.07) 1.21 (0.07) 1.25 (0.09) (0.16)
7024 1.06 1.24 (0.01) 1.28 (0.02) 1.37 (0.05) (0.18)

GROUP P
7063 0.88 0.52 (0.02) 0.43 (0.07) 0.58 (0.88) (3.19)
7760 0.74 1.20(0.01) 1.00 (0.05) 0.91 (0.04) (0.05)
8306 0.93 0.94(0.01) 0.89 (0.01) 0.88 (0.01) (0.05)
7582 1.12 0.74(0.00) 0.81 (0.01) 0.86 (0.12) (0.20)
7722 1.11 0.93 (0.02) 0.99 (0.02) 1.02 (0.02) (0.02)
7635 0.96 0.90 (0.01) 0.87 (0.01) 0.86 (0.02) (0.08)
7595 1.21 0.58 (0.09) 0.70 (0.15) 0.78 (0.55) (0.82)

GROUPED DATA
Group T 1.00 0.93 (0.19) 0.93 (0.19) 0.93 (0-19) (0.20)
Group P 0.97 0.85 (0.14) 0.83 (0.14) 0.83 (0.16) (0.24)

logk, for convenient reference to Equation 3.
Inspection of Table 2, column (a), shows Equa-
tion 3 to be an excellent representation of the
data: the goodness-of-fit measures are all less
than 0.10. The values in column (d) indicate
that Equation 2 is inadequate in 10 of the 15
cases if the criterion for fit of 0.10 is accepted.
Data for Subject #7063 are a clear violation of
Equation 2. Note, however, that for 14 of the
15 birds, #7595 is the exception, column (b)
conditions produce excellent fit.
Comparison of the two groups suggests that

Group T may tend to have higher values of
a, in column (a), than does Group P. The
grouped data at the bottom of Table 2 ob-
tained by pooling data for all animals in a

group and finding a single regression line
support this conclusion. However, the values
of a for individual subjects show great overlap
of the two groups.
The curve-fitting analysis of data for indi-

vidual subjects indicates that Equation 3 was

supported, but it can be reduced to an equa-
tion with only one free parameter, a. Further,
the method of generating the RI schedules, the
differentia of the two groups, had little if any
effect on the value of a. Statistical procedures
for parameter estimation from sample data
should confirm these conclusions andl provide
values of k and a.

Statistical procedures, using the t distribu-
tion, for setting the 90% confidence intervals
about the means of logk and loga were applied
to the logarithms of the values in Table 2,
column (a). The antilogs of the results were
as follows. For Group T, k was found to be
1.01, with a 90'% confidence interval of 0.94
to 1.08; the values of a were 0.89 and 0.74 to
1.06. Corresponding values for Group P were:
k = 0.98, 0.86 to 1.11, and a = 0.80, 0.64 to
1.01. When data for both groups were pooled,
k was found to be 1.00, with an interval of
0.94 to 1.06, and a was 0.84 with an interval
of 0.74 to 0.96. The value of k clearly tended
toward 1.0, and the value of a tended to be
less than 1.0. Note the greater variability in a.
These results confirm the conclusions of the
previous analysis and suggest that the param-
eter a is less than 1.0, the common finding of
"undermatching" (Baum, 1974).
Given these estimates of k and a, it is pos-

sible to make a quantitative comparison of the
results of conc RI RI and conc VI VI sched-
ules. de Villiers (1977, p. 240) presented data
similar to those of Table 2, column (a), for 23
birds from seven laboratories employing conc
VI VI schedules. The present author applied
the statistical analysis given above to these
data. The value of k was 0.96, with a 90%
confidence interval of 0.90 to 1.02; correspond-
ing values for a were 0.82 and 0.76 to 0.89.
The overlap of parameter values for conc RI
RI and conc VI VI schedules is impressive.
When the results of the present experiment
were pooled with those from de Villiers, n =
38, the value of k was 0.97, with a 90% confi-
dence interval of 0.93 to 1.02. Corresponding
values for a were 0.83 and 0.78 to 0.89. A t
test of logk = 0.0 produced t (37) = -1.009,
and the test of loga = 0.0 produced t (37) =
-4.609. For a two-tailed test, there is no evi-
dence against logk = 0.0 (p > 0.30), but there
is strong evidence against loga = 0.0 (p < 0.01).
Based on accumulated data for conc RI RI
and conc VI VI schedules it is concluded that
k in Equation 3 is 1.0 and a is less than 1.0,
approximately 0.83.

EXPERIMENT II
It is known that Equation 2 does not ac-

count for data from conc Fl VI schedules
(Baum, 1974). The RI schedules fall on a con-
tinuum between Fl and VI schedules. When P
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is 1.0, one has an FI, and as P moves from 1.0,
VI-like schedules are produced. How Fl-like
can one component of a conc RI RI schedule
be without violating the prediction of Equa-
tion 2? This experiment was designed to dem-
onstrate the effects of long intervals, T, and
large probabilities, P, in regard to Equation 2.

METHOD
Subjects

Six experimentally naive White King pi-
geons were maintained at 80% to 85% of their
free-feeding weights throughout the experi-
ment.

Apparatus
The apparatus was the same as in Experi-

ment I.

Procedure
Preliminary training was the same as in Ex-

periment I. Fifteen 1-hr sessions followed on
Schedule 1, conc RI 64-sec RI 64-sec (TL = 1
sec, PL = 2/128, TR = 43 sec, PR = 86/128).
Fifteen more sessions followed on Schedule 2,
conc RI 64-sec RI 64-sec (TL = 1 sec, PL = 2/
128, TR = 57 sec, PR = 114/128). For both con-
current pairs, the mean interreinforcement
times on the two alternatives were equal, but
the parameters, T and P, were quite different.

RESULTS AND DISCUSSION
Responses and obtained reinforcers were

averaged over the last five sessions on each
schedule for each bird. The means and stan-
dard errors are shown in Table 3. As in Experi-
ment I, the means appear to be representative
of the sessions entering into their determi-
nation. Since both schedules provided essen-
tially the same ratios of reinforcer densities,
approximately 1.0, curve fitting for Equation
3 is uninformative: the correlation of log
(B1/B2) with log(r1/r2) is expected to be near
zero, and this implies a value for a of zero.
Further, the value of k might be expected to
change systematically as the schedule param-
eters change (Baum, 1974), and this suggests an
evaluation of k for each schedule. Thus, a dif-
ferent implication of Equation 3 was exam-
ined. Rearrangement of the logarithmic form
of Equation 3 with a = 1 produces:

log(Bl/B2) - log(rl/r2) = logk. (5)

Table 3

Means and standard errors for last five sessions on each
schedule for each animal.

Responses/Minute ReinforcersIHour
Animal Left Right Left Right

7228 29.7 (2.1) 29.5 (2.5) 47.8 (2.4) 40.0 (1.9)
35.0 (5.9) 30.7 (2.3) 48.6 (3.6) 48.0 (1.4)

8098 41.4 (1.8) 41.1 (3.2) 44.8 (3.0) 48.2 (2.1)
49.7 (1.9) 57.0 (3.7) 47.0 (2.2) 47.8 (1.0)

8137 53.2 (1.8) 37.4 (2.6) 46.8 (1.5) 46.4 (1.4)
63.4 (4.4) 36.3 (2.6) 48.2 (3.0) 46.6 (1.2)

8114 49.6 (2.8) 34.8 (2.6) 54.8 (2.9) 43.0 (1.8)
60.7 (3.1) 32.3 (3.3) 50.0 (1.1) 43.8 (1.4)

7149 31.7 (3.2) 32.3 (2.1) 39.2 (3.4) 51.2 (0.7)
42.1 (1.8) 37.2 (2.8) 49.6 (3.7) 48.0 (1.8)

8131 42.6 (3.1) 38.6 (2.6) 48.4 (3.6) 43.8 (2.4)
60.0 (6.5) 34.7 (3.7) 42.6 (4.0) 44.4 (2.1)

If logk in Equation 5 is zero, then Equation 2
is supported. However, logk =# 0 argues for re-
tention of the parameter k in Equation 3.
Baum's (1974) analysis of data from Trevett,
Davison, and Williams (1972) for conc FI VI
schedules indicated preference for the VI alter-
native. Therefore, when the ratios in Equation
5 are formed as VI-like/FI-like alternatives,
the left-key relative to the right-key alterna-
tives of the present experiment, logk greater
than zero is expected. The statistical hypothe-
sis implied by Equation 2 can be tested as the
"null" hypothesis usually is, and the data from
conc FI VI schedules specify the alternative to
this "null" hypothesis.

For each schedule, pooled data for the six
subjects, derived from Table 3 for use in
Equation 5, were evaluated in terms of the
t distribution. For Schedule 1, t (5) = 1.355
for the mean difference of 0.0435. For Sched-
ule 2, t (5) = 2.402 for the mean difference
of 0.1136. For Schedule 2, but not for Sched-
ule 1, there was evidence against t = 0 at the
0.05 level, one-tailed. As conc RI RI schedules
converge on conc FI RI schedules, the results
in terms of Equation 3 become similar to
those obtained with conc Fl VI schedules.

GENERAL DISCUSSION
Random-interval schedules establish a well-

defined continuum bounded by the Fl and VI
schedules. As T approaches T/P, the RI sched-
ules approach the FI; with P much less than
1.0, the VI schedules are approximated.
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Farmer (1963) showed that the length of the
postreinforcement pause in RI schedules is a
joint function of T and T/P. It is reasonable
to assume that conc RI RI schedules will pro-
duce data sometimes similar to concurrent Fl
and sometimes similar to concurrent VI situ-
ations. The results of Experiment I were very
close to those from conc VI VI experiments;
results of Experiment II were similar to ones
from conc FI VI schedules. In both cases,
Equation 3 was supported and Equation 2
was not. Baum's (1974) demonstration that
qualitatively different schedules, conc FI VI,
cause k =# 1.0 was confirmed in Experiment II.
His generalization that undermatching, a < 1,
is the common result in conc VI VI situations
was confirmed in Experiment I.
The results of Experiment II suggest that

any variable that produces failure of Equation
2 under the condition of equal reinforcer den-
sities will result in k =, 1.0 in Equation 3. This
follows, since that concurrent pair sets the
origin for Equation 3, or at least strongly in-
fluences the value resulting from curve fitting.
In Experiment I, the component schedules
were identical, in regard to parameters, at the
point for equal reinforcer densities, and k =
1.0 resulted. The same condition probably ob-
tained in the experiments summarized by de
Villiers (1977); k = 1.0 for those data.
Why is a < 1.0 in Equation 3? The param-

eter a is estimated by the least-squares proce-
dure as the covariance of log(B1/B2) with log
(r1/r2) divided by the variance of the latter.
Therefore, any variable that tends to attenu-
ate the covariance results in a < 1.0. At this
time, the list of candidates must be long, and
it probably includes most of the variables of
general interest in the field of operant condi-
tioning. Perhaps the best research tactic is to
manipulate variables, with the aim of finding
a set that strongly influences the value of a.
These variables may then be added to Equa-
tion 2, and a more general empirical relation
may be established. The relation will require
examination of composition rules for the vari-
ables. To search for some condition that pro-
duces a = 1.0, given the comment above, is
unlikely to be fruitful.

Herrnstein (1970) and de Villiers (1977)
have been interested in a version of the match-
ing law, which entails addition of parameters.
The parameters carry more theoretical weight

than those of Equation 3. The effort suggests
the possibility of a rational law built on an
empirical law and should, therefore, be ex-
amined carefully. For concurrent schedules of
the kind from Experiment I, the "new" law
may be written as:

B1r1rr2+ mr±+ ro (6)
B2 r2 Lr1+mr2+r0J

The value of m is assumed to be 1.0 for con-
current schedules. The term ro is an extra
source of reinforcement. If m = 1.0, then
Equation 6 reduces to the, false, Equation 2.
On the other hand, if B1/B2 = (r1/r2)a, Ex-
periment I, then for r, > r2, the bracketed
quantity must be less than 1.0. Given the in-
equality, it is easily shown that m < 1.0 in
Equation 6. The rationale for setting m = 1.0
should be reconsidered.
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